在 Sentinel 里面,所有的资源都对应一个资源名称以及一个 Entry。Entry 可以通过对主流框架的适配自动创建,也可以通过注解的方式或调用 API 显式创建;每一个 Entry 创建的时候,同时也会创建一系列功能插槽(slot chain)。这些插槽有不同的职责,例如:
NodeSelectorSlot
负责收集资源的路径,并将这些资源的调用路径,以树状结构存储起来,用于根据调用路径来限流降级;ClusterBuilderSlot
则用于存储资源的统计信息以及调用者信息,例如该资源的 RT, QPS, thread count 等等,这些信息将用作为多维度限流,降级的依据;StatisticSlot
则用于记录、统计不同纬度的 runtime 指标监控信息;FlowSlot
则用于根据预设的限流规则以及前面 slot 统计的状态,来进行流量控制;AuthoritySlot
则根据配置的黑白名单和调用来源信息,来做黑白名单控制;DegradeSlot
则通过统计信息以及预设的规则,来做熔断降级;SystemSlot
则通过系统的状态,例如 load1 等,来控制总的入口流量;总体的框架如下:
Sentinel 将 ProcessorSlot
作为 SPI 接口进行扩展(1.7.2 版本以前 SlotChainBuilder
作为 SPI),使得 Slot Chain 具备了扩展的能力。您可以自行加入自定义的 slot 并编排 slot 间的顺序,从而可以给 Sentinel 添加自定义的功能。
下面介绍一下各个 slot 的功能。
这个 slot 主要负责收集资源的路径,并将这些资源的调用路径,以树状结构存储起来,用于根据调用路径来限流降级。
ContextUtil.enter("entrance1", "appA");
Entry nodeA = SphU.entry("nodeA");
if (nodeA != null) {
nodeA.exit();
}
ContextUtil.exit();
上述代码通过 ContextUtil.enter()
创建了一个名为 entrance1
的上下文,同时指定调用发起者为 appA
;接着通过 SphU.entry()
请求一个 token,如果该方法顺利执行没有抛 BlockException
,表明 token 请求成功。
以上代码将在内存中生成以下结构:
machine-root
/
/
EntranceNode1
/
/
DefaultNode(nodeA)
注意:每个 DefaultNode
由资源 ID 和输入名称来标识。换句话说,一个资源 ID 可以有多个不同入口的 DefaultNode。
ContextUtil.enter("entrance1", "appA");
Entry nodeA = SphU.entry("nodeA");
if (nodeA != null) {
nodeA.exit();
}
ContextUtil.exit();
ContextUtil.enter("entrance2", "appA");
nodeA = SphU.entry("nodeA");
if (nodeA != null) {
nodeA.exit();
}
ContextUtil.exit();
以上代码将在内存中生成以下结构:
machine-root
/ \
/ \
EntranceNode1 EntranceNode2
/ \
/ \
DefaultNode(nodeA) DefaultNode(nodeA)
上面的结构可以通过调用 curl http://localhost:8719/tree?type=root
来显示:
EntranceNode: machine-root(t:0 pq:1 bq:0 tq:1 rt:0 prq:1 1mp:0 1mb:0 1mt:0)
-EntranceNode1: Entrance1(t:0 pq:1 bq:0 tq:1 rt:0 prq:1 1mp:0 1mb:0 1mt:0)
--nodeA(t:0 pq:1 bq:0 tq:1 rt:0 prq:1 1mp:0 1mb:0 1mt:0)
-EntranceNode2: Entrance1(t:0 pq:1 bq:0 tq:1 rt:0 prq:1 1mp:0 1mb:0 1mt:0)
--nodeA(t:0 pq:1 bq:0 tq:1 rt:0 prq:1 1mp:0 1mb:0 1mt:0)
t:threadNum pq:passQps bq:blockedQps tq:totalQps rt:averageRt prq: passRequestQps 1mp:1m-passed 1mb:1m-blocked 1mt:1m-total
此插槽用于构建资源的 ClusterNode
以及调用来源节点。ClusterNode
保持资源运行统计信息(响应时间、QPS、block 数目、线程数、异常数等)以及原始调用者统计信息列表。来源调用者的名字由 ContextUtil.enter(contextName,origin)
中的 origin
标记。可通过如下命令查看某个资源不同调用者的访问情况:curl http://localhost:8719/origin?id=caller
:
id: nodeA
idx origin threadNum passedQps blockedQps totalQps aRt 1m-passed 1m-blocked 1m-total
1 caller1 0 0 0 0 0 0 0 0
2 caller2 0 0 0 0 0 0 0 0
StatisticSlot
是 Sentinel 的核心功能插槽之一,用于统计实时的调用数据。
clusterNode
:资源唯一标识的 ClusterNode 的 runtime 统计origin
:根据来自不同调用者的统计信息defaultnode
: 根据上下文条目名称和资源 ID 的 runtime 统计Sentinel 底层采用高性能的滑动窗口数据结构 LeapArray
来统计实时的秒级指标数据,可以很好地支撑写多于读的高并发场景。
这个 slot 主要根据预设的资源的统计信息,按照固定的次序,依次生效。如果一个资源对应两条或者多条流控规则,则会根据如下次序依次检验,直到全部通过或者有一个规则生效为止:
这个 slot 主要针对资源的平均响应时间(RT)以及异常比率,来决定资源是否在接下来的时间被自动熔断掉。
这个 slot 会根据对于当前系统的整体情况,对入口资源的调用进行动态调配。其原理是让入口的流量和当前系统的预计容量达到一个动态平衡。
注意系统规则只对入口流量起作用(调用类型为 EntryType.IN
),对出口流量无效。可通过 SphU.entry(res, entryType)
指定调用类型,如果不指定,默认是EntryType.OUT
。